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Abstract

Formation flight is a known method of improv-
ing the overall aerodynamic efficiency of a pair of
aircraft. In particular, one craft flying in the cor-
rect position in the vortex wake of another can real-
ize substantial reductions in drag, with the amount
of the reduction dependent on the relative posi-
tions of the two craft. This paper looks at such
a pair, with one craft flying behind and to the side
of the lead plane. The precise position of the sec-
ond craft relative to the first to maximize the drag
reduction is to be determined online, leading to a
peak-seeking control problem. A new method of
peak-seeking control, using a Kalman filter to es-
timate the characteristics of the drag reduction, is
derived and discussed. A simple model of the two-
plane formation using horseshoe vortices is defined,
and the peak-seeking controller is applied to this
model. The method is demonstrated in simulation
using this simplified model.

1 Introduction

As an airplane flies, it causes an upwash ahead of the
wing, and leaves a wake behind. This wake is char-
acterized by the downwash behind the wing, and by
an accompanying upwash in the area on either side
of the downwash region. By flying in the area of
upwash, a second aircraft can gain a substantial ef-
ficiency boost, due to the reduction in induced drag
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it will experience. This leads to the well-known fact
that two aircraft flying in an appropriate formation
can achieve overall efficiency much greater than were
they flying separately [1]. This effect is analyzed
using inviscid aerodynamic assumptions and lifting-
line theory in [2], where it is noted that the effects
were considered by Munk as early as 1919. The the-
ory was put to test in actual aircraft by Hummel[3],
who established a fifteen per cent reduction on the
second of a pair of civilian aircraft.

Due to the gains in efficiency, formation flight
has been investigated as a way of increasing the
range and duration of autonomous aerial vehicles.
In [4, 5], formations of several aircraft are consid-
ered, with the object of creating a solar-powered
formation that could cruise at high altitude for ar-
bitrarily long times. In [4], decentralized controllers
are derived for a formation of five high aspect ratio
craft, and are shown to be capable of maintaining a
prescribed formation despite the nonlinear, destabi-
lizing moments induced on each plane by the aircraft
ahead of it in the formation. The formation main-
tenance problem for a pair of F-16 class aircraft is
considered in [6], though that paper relegates the
rolling moments on the trailing craft to an inner-
loop controller and considers only the lift and side
force in designing an autopilot for the trailing plane.

In this paper, only a pair of aircraft is consid-
ered. The two craft may be thought of as a leader
and a follower. The leader flies straight and level,
as if alone. The second plane flies behind and out-
board of the leader, in the upwash pattern on one
side (we will take it to be the right hand side, but
the analysis is the same for the left side). In this
configuration, there is only a negligible effect of the
follower on the leader, and it is the follower that
gets the direct benefit of reduced drag. The precise
position of the follower for maximal drag reduction



depends on the flight conditions and the geometries
of the actual aircraft involved. For this reason, it is
desireable to have a method of identifying the opti-
mal location in flight. When considering unpiloted
aerial vehicles (UAVs), it is particularly important
that this method be automated.

The general class of such control problems is
that of peak-seeking control, also referred to as
extremum-seeking control. Such problems were ad-
dressed as long ago as 1922[7], and are briefly re-
viewed in [8]. More recently, the topic has been ex-
amined in connection with combustion instability in
axial-flow compressors [9, 10, 11] and various other
applications [12]. The analysis of these problems is
addressed in [13], where an averaging framework is
suggested.

In the next section, the aerodynamics of formation
flight are briefly reviewed, using standard inviscid
fluid theory, and a model of the effects of formation
flight on the trailing aircraft is derived. The third
section presents the peak-seeking scheme to be used
to optimize the drag benefit during flight. Simula-
tion results are presented in section 4, and the fifth
section concludes the paper.

2 Aerodynamics of Formation
Flight

A detailed description of the aerodynamics of even
a single aircraft is highly complicated. However, for
the purposes of this discussion, most of the details
of airflow over an airplane may be ignored. Instead,
we take the point of view that the effects of flight
on an aircraft, and of the aircraft on the air that
flows over it, are principally due to the wing, and
the creation of lift. For that reason, we will consider
only the wing. Further, we will use the bound vor-
tex model[2, 1] to represent the wing of the leading
craft. This will enable a straightforward model that
captures the significant effects of formation flight on
the trailing craft. It should be noted that this is not
intended to be a complete and detailed model of
the flow about the trailing craft. Also, because we
assume inviscid and incompressible flow, the model
loses its validity at near-transonic velocities.

As a further simplifying assumption, we will as-
sume that the lead aircraft maintains straight and
level flight at all times.

2.1 Bound Vortex Model

2
1

Figure 1: Two aircraft in formation.

Consider two aircraft flying in formation. Each
craft is modeled using the horseshoe vortex, as in
Figure 1. This is intended to model the effects of the
aircraft on the air around it, rather than to carefully
model the airflow near the airplane itself. A central
assumption in this model is that the effects on the
airflow are almost entirely due to the lift generated
by the wing.

To calculate these effects, the wing is modeled as
a single, straight vortex segment, which is “bound”
to the wing. In keeping with the Helmholtz vortex
laws, this vortex cannot simply end at the wingtips.
Instead, it extends as a semi-infinite vortex from
each wingtip. In general, these vortices are not fixed
in space, but are free to move with the surrounding
airmass. In the horseshoe vortex model, they are
assumed to be straight, and under inviscid flow as-
sumptions they lose none of their strength, regard-
less of how far away the wing becomes.

Remark 1: The vortex wake of an aircraft is of
course much more complicated than this. In partic-
ular, most wings do not have a single, well-defined
vortex from the wingtip. Instead, the vorticity is dis-
tributed through the wake behind the entire wing.
Also, the wake descends slightly behind the aircraft.
However, the majority of the vorticity, particularly
from a wing with high aspect ratio, tends to be shed
near the tip of the wing. ♣

The velocity induced by a vortex segment on the
surrounding inviscid fluid is described by the Biot-
Savart law. The situation is shown in Figure 2. In
this figure, the velocity induced at the point P by

2



β1

β2

A

B d

D

P

Figure 2: The Biot-Savart law.

the vortex segment running from A to B is given by

q =
Γ

4πd
(cosβ1 − cosβ2) (1)

where Γ is the strength per unit length of the vor-
tex and d is the shortest distance from P to the line
along which the segment lies. The sign of the ve-
locity is positive by the right hand rule about the
vortex segment.

Applying this law to a single airplane explains the
creation of the upwash ahead of a wing, the down-
wash behind, and the upwash regions outboard of
each trailing vortex. When it is applied to Figure 1,
it is easy to see that there is little effect generated by
the trailing aircraft on the leader. The upwash gen-
erated by the wing’s bound vortex, and that of the
outboard wingtip vortex, decay too quickly to have
any significant effect. And the inboard wingtip vor-
tex of the trailing plane is poorly positioned to have
any effect. Similarly, the effect on the follower air-
craft is seen to be almost entirely due to the trailing
vortex passing near the inboard wingtip. Because of
these effects, we will consider only this vortex and
its effect on the follower aircraft.

Remark 2: As noted in remark 1, the wake of an
aircraft tends to descend as it leaves the wing. One
of the results of formation flight is that the upwash
ahead of a well-positioned follower tends to lift the
portion of the wake that passes near the wing, so
that as it passes the wingtip it is very nearly at the
same altitude as the leading aircraft’s wingtip. ♣

In the formation shown in Figure 1, the follower
is entirely in an upwash region. This upwash causes
the angle of attack along the wing to be greater than
the nominal angle of attack of the aircraft itself, giv-
ing greater lift than would be otherwise generated.
Because the upwash is inversely proportional to the

distance from the vortex, the effect is strongest at
the portion of the wing that is nearest the vortex,
and falls away sharply with distance. The result is
that the majority of the lift induced on the trailing
plane occurs near the end of the wing. This causes a
strong outward rolling moment on the follower air-
craft.

The reduction in induced drag experienced by the
follower craft is related to the lift created by the
upwash field. Induced drag is a penalty of creating
lift; the gain in efficiency may be thought of as result
of the follower not having to create the lift itself, and
therefore not creating as much drag. The actual
effect can be related to less downwash behind the
wing [14, 15]. Hummel[3] relates it to the lift vector
on the wing itself, which is rotated forward due to
the upwash. For our purposes it is enough to note
that the gain in efficiency is related to the gain in lift.
Thus, we can exchange the problem of minimizing
drag with that of maximizing the vortex-induced lift
on the follower craft.

Remark 3: A further effect of the upwash pattern
on the follower wing is that the reduction in drag
is greater near the end of the wing. This induces a
small outward yawing moment on the follower craft.
This is a minor effect. ♣

Remark 4: Any side force induced on the follower is
assumed negligible, and will not be considered here.

♣

The Kutta-Joukowski Theorem: The strength
of the vortices in the problem will be calculated us-
ing the Kutta-Joukowski theorem. This theorem
deals with the forces induced on a vortex fixed in
space, due to the motion of the surrounding fluid.
Without derivation, the theorem can be presented
as

~F = ρ~V × ~Γ (2)

where ρ is the density of the fluid, ~V is the velocity of
the fluid, and ~Γ is the strength per unit length of the
bound vortex. The resulting force vector ~F is the
force per unit length, imposed on the bound vortex.
Applying this theorem to an aircraft in steady flight
allows the computation of the strength of the bound
vortex as

L = ρV∞Γb = W

⇒ Γ = W/ρV∞b (3)

where L is the lift generated by the bound vortex,
W the weight of the aircraft, V∞ the velocity of the
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craft through the fluid, and b the wingspan of craft.
Thus the vortex strength is defined by the aircraft
parameters and the default flight condition.

2.2 Computation of Induced Lift and
Moment
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Figure 3: The induced velocity at the trailing wing.

The facts and assumptions of the last section will
now be applied to the formation flight problem de-
scribed earlier. The geometry of the problem is
shown in Figure 3. The variables ∆x,∆y, and ∆z
describe the location of the inboard wingtip of the
trailing aircraft in relation to the outboard tip of
the leader’s wing; ∆x = ∆y = ∆z = 0 results in the
wingtips being aligned. The (constant) velocity of
the lead plane is in the x direction, and the straight
trailing vortex lies along the x-axis.

We make three further simplifying assumptions.
Due to the geometry of the situation, it is easy to
see that a small change in following distance makes
very little difference in the effects on the trailing
plane; thus, we take this distance to be constant.
For similar reasons, we take the trailing craft roll
angle to be zero at all times, and ignore any effect
of sideslip.

Under these assumptions, the problem reduces to
computing the effects of a fixed vortex of known
strength on the trailing wing. We do this by com-
puting the upwash along the wing using the Biot-
Savart law, and from this computing the local angle
of attack due to upwash. Assuming a linear relation
of lift to angle of attack, this allows the effects due
to the presence of the vortex to be added to the lift
and moment generated by the orientation of the air-
craft itself. Denoting the induced lift at a point on

the wing as ∆L(s), we have the relation

d∆L(s) =
ρV 2
∞c(s)
2

Clα(s)∆α(s)ds (4)

Here, we use s to mean the point along the wing,
with s = 0 being the inboard wingtip and s = b the
outboard wingtip. The incremental rolling moment
induced is simply the incremental lift times the mo-
ment arm, giving

dM(s) = d∆L(s)(b/2− s)ds (5)

The induced angle of attack we will compute as

∆α(s) = tan−1(w/V∞) ≈ w/V∞ (6)

where w is the upwash velocity induced by the trail-
ing vortex. We can compute this as w = q sinλ,
where λ is defined as in Figure 3.

We can represent λ through the geometry of the
situation as

sinλ = cos(π/2− λ) =
y√

y2 + ∆z2
(7)

with the distance h as

h =
√
y2 + ∆z2 (8)

The values of the cosines in (1) become

cosβ1 = ∆x√
∆x2+∆z2+(∆y+s)2

cosβ2 = −1
(9)

Combining (7), (8), (9), and the Biot-Savart law
gives

w(y) = q sinλ =
Γ
4π

y

y2 + ∆z2
×(

1 +
∆x√

∆x2 + ∆z2 + (∆y + s)2

)
(10)

Assembling all of these results, we arrive at the ex-
pressions

∆L =
ρV∞Γ

8π
CLα

∫ b

0

y

y2 + ∆z2
×(

1 +
∆x√

∆x2 + ∆z2 + (∆y + s)2

)
ds (11)

and

∆M =
ρV∞Γ

8π
CLα

∫ b

0

y

y2 + ∆z2
×(

1 +
∆x√

∆x2 + ∆z2 + (∆y + s)2

)
(b/2− s)ds

(12)
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where the lift curve slope has been assumed constant
for all s. For rectangular wings, the chord c(s) is also
constant, allowing further simplification.
The Vortex Core: The Biot-Savart result used so
far becomes meaningless when the wingtip of the
trailing aircraft approaches the core of the vortex.
When ∆z = 0 and ∆y + s = 0 is included in the
integration interval, in fact, the integral of ds/s is
clearly unbounded and so would be the lift gener-
ated.

To deal with this, we note that the vortex core
has finite diameter. Within this core, the velocity
is often assumed to be linear with distance from the
center of the core, and this will be assumed here.
We can further simplify the equations by noting that
∆x always has some appreciable value, while within
the core y and ∆z must both be small. Therefore,
we take the value of cosβ1 in this region to be 1.
Combining these assumptions, the upwash within
the core becomes simply

w = k
√
y2 + ∆z2 (13)

where the constant k will be chosen such the upwash
is constant across the boundary of the vortex core,
and the expressions for ∆L and ∆M become much
simpler.
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Figure 4: Induced lift.

The induced lift as a function of lateral and ver-
tical separation is shown in Figure 4. A zero value
of separation refers to wingtips aligned. The values
are taken from [16] for a Cessna-172 type aircraft.
The vortex core radius was chosen such that at the
edge of the core, the induced angle of attack is ap-
proximately 12 degrees; above this value, the total

angle of attack is such that the wing would most
likely stall. The actual values used are given later
in this paper, when the simulation is discussed.

2.3 Effects of Wing Geometry and
Follower Position

While the topic of this paper is control rather than
aerodynamics, a few comments on the effects of wing
geometry and follower position are in order. The ef-
fect of the second of these is straightforward; the
effect of the first is less so. In both cases, the ef-
fects are due to the combination of upwash outboard
of the leading wing’s vortex wake, and the strong
downwash just inside.
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Figure 5: Induced moment function.

First consider an aircraft with a rectangular wing,
such as sketched in Figure 1, and let the trailing vor-
tex from the leader be fixed in space (let the vortex
have some finite diameter, so that the induced veloc-
ities remain finite). As the follower craft gets farther
from the vortex, both the lift and moment induced
on it go to zero. As it comes closer, both lift and
moment increase, until both are maximized as the
wingtip touches the vortex. Should the follower con-
tinue inward, so that its wingtip is now in the down-
wash field, both lift and moment begin to decrease.
This is because the downwash creates a downward
force on the wing, and thus a moment in the op-
posite direction to that imposed on the rest of the
wing. As this section has the greatest moment arm,
the reduction in moment is larger (in proportion to
the overall induced moment) than is the reduction
in lift. This asymmetry can be seen near the vor-
tex by comparing the moment function displayed in
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Figure 5 with the lift function in Figure 4. As more
of the wing enters the downwash area, there comes
a point at which there is still positive induced lift,
while the moment goes to zero. The extreme case
occurs when the vortex runs down the centerline of
the follower craft. Were this case physically possi-
ble, it would result in zero overall induced lift, while
a moment rolling the follower into the leader’s wake
would be at maximum strength.
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Figure 6: Normalized lift and moment vs. lateral
position for a delta wing.

If we replace the rectangular wing on the follower
craft with a delta wing, the effects on the follower
become less straightforward. In this case, a small
overlap of the follower craft, so that a wingtip is in
the downwash region, might be desireable. This is
because the area of the wing section in downwash is
small, while the part of the wing now in the strong
upwash section has a larger chord (consider eqn. 4).
Therefore, the net effect is a gain in lift. The greater
moment arm of the section in the downwash region
exaggerates the effect on the total induced moment,
however. Because of this, the moment will begin to
decrease even as the lift continues to increase with
overlap. This effect is illustrated in Figure 6, which
shows the effect on a trailing aircraft with a delta
wing. The lateral position varies from −b/2, so that
the vortex runs down the follower centerline, to b/2.
Note that the point of maximum induced lift coin-
cides with an overlap of approximately 0.15b, while
the maximum induced moment remains near zero
overlap.

Because many aircraft have at least some taper

to their wings, even in this simplified analysis the
optimal flight formation would include some overlap.
When the effect of a distributed vortex wake from a
leading craft with wing taper is included, the overlap
for maximum lift may be quite high.

Remark 5: All of the analysis in this paper ignores
the changes in lift distribution on the follower air-
craft wing due to control deflections. It is known[3],
that this can have an effect on the drag reduction
(Hummel reports an enhancement). However, this
effect is specific to particular aircraft, and will not be
addressed here. It may be taken as a further reason
that the precise position for greatest drag reduction
is unlikely to be known in advance. ♣

3 Peak Seeking Scheme

Lateral
Tracking Loop

Longitudinal
Tracking Loop

Gradient
Estimation

Kalman
Filter

x̂

k  /s2
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+

+

ε1sinω1 t

ε2 sin
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ω2 t
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Flight
Effects

h
^

ŷ
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f̂
h

f̂
y

f(h,y)

h

Figure 7: Block diagram of peak-seeking controller.

The physical problem having been defined, we
proceed to derive a controller to maximize the lift
during flight. As demonstrated, the lift is primarily
a function of the lateral and vertical separation of
the aircraft, and as modeled this is specifically true.
Thus, we seek a controller that optimizes on-line a
nonlinear function of the system states ∆y and ∆z.
The structure of the resulting controller will be as
shown in Figure 7.

The peak-seeking scheme begins with the propo-
sition that the current value of the states is the op-
timum. Were this true, the control system would be
primarily concerned with maintaining these values;
this is the usual disturbance-rejection task. To find
out if it is true, a dither signal is added to each of the
states of interest. The aircraft tracks these oscillat-
ing states, and the resulting motion of the aircraft
results in an oscillation in the value of the function
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to be maximized (in this case the drag benefit of
formation flight).

The value of the function is fed to a modified
Kalman filter, which is used to estimate the val-
ues of the gradients of the function with respect to
the states of interest. These estimated gradients are
used as input for the controller, which in turn yields
what is taken to be the optimal value of the states.
The dither signal is again added, and the loop con-
tinues. In this way, the states are adjusted until
the gradient estimate goes to zero. In most earlier
work (for example [9]), only the sign of the esti-
mated gradient is used in the peak-seeking loop; to
the authors’ knowledge, the first use of the gradient
estimate itself in the loop is presented in [20].

We will first derive a Kalman filter to be used to
derive the gradient, and then implement a control
loop that includes the filter.

3.1 Kalman Filter for Gradient Esti-
mation

Because we are assuming straight and level flight
on the part of the lead aircraft, we may ignore that
craft in deriving the filter and the controller. There-
fore, we will define the function to be maximized as
a function of the trailing aircraft states only. In this
section, we use h to denote the altitude of the air-
craft, rather than −z. The variable z is taken to be
the measurement of the linear system under consid-
eration.

We begin by expanding the function to be extrem-
ized as

f(h, y) = f(ĥ, ŷ)+fh(ĥ, ŷ)δh+fy(ĥ, ŷ)δy+o(δh, δy)
(14)

where (ĥ, ŷ) is the current estimate. Introducing the
dither signals into the input of the tracking loop (see
Figure 7), the output is assumed to first-order to be

h ∼= ĥ+ δh = ĥ+ ε̄1 sin(ω1t+ θ1) (15)
y ∼= ŷ + δy = ŷ + ε̄2 sin(ω2t+ θ2) (16)

The underlying assumptions are that the gradient
changes are slow with respect to the tracking loops
and the dither frequencies, so that ĥ and ŷ may be
assumed constant, and that the dither inputs are
tracked well, except for an amplitude and phase un-
certainty. Under these assumptions, the expansion

(14) of the formation flight effects becomes

f(h, y) =f(ĥ, ŷ) + ε̄1fh(ĥ, ŷ) sin(ω1t+ θ1(t))

+ ε̄2fy(ĥ, ŷ) sin(ω2t+ θ2(t)) + o(δh, δy)
(17)

where ε() and ω() of the input dither signal are to
be chosen by the designer.

To estimate the two gradients using the Kalman
filter, we define the state variables

x ≡


x1

x2

x3

x4

x5

 =


f̃h sin(ω1t+ θ1)
f̃h cos(ω1t+ θ1)
f̃y sin(ω2t+ θ2)
f̃y cos(ω2t+ θ2)

f(ĥ, ŷ)

 (18)

where f̃h = ε̄1fh(ĥ, ŷ) and f̃y = ε̄2fy(ĥ, ŷ). We
act for now as if the pair (ĥ, ŷ) were fixed, so
that f, fh, and fy may be treated as unknown con-
stants. Furthermore, we assume that θ1 is a Brow-
nian motion process with zero mean and variance
E[θ1(t)θ1(τ)] = σ2

1t if τ ≥ t (with similar assump-
tions on θ2). This fits the theory given in [19]. If
the Îto differentials of x are taken, then we get

dx = Fxdt+ dGx+ dw (19)

where

F =


−σ

2
1
2 ω1 0 0 0

−ω1 −σ
2
1
2 0 0 0

0 0 −σ
2
2
2 ω2 0

0 0 −ω2 −σ
2
2
2 0

0 0 0 0 κ

 ;

dG =


0 dθ1 0 0 0
−dθ1 0 0 0 0

0 0 0 dθ2 0
0 0 −dθ2 0 0
0 0 0 0 0

 ;

dw = [0 0 0 0 dw0]T

w0(t) is a white Gaussian process noise with zero
mean and spectral density W0, and the values
for σ1, σ2, κ, and W0 are empirically determined
through simulation and filter performance.

Allowing the higher-order terms in eqn. (17) to
be considered as noise, the measurement equation is
expressed as:

z(t) = [1 0 1 0 1]x(t) + v(t)
= Hx(t) + v(t) (20)
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where v(t) ∼ N(0, V (t)), and z(t) recovers f(ĥ, ŷ).
The filter for the above dynamic structure (19,20)

is taken to be the best linear minimum variance es-
timator as

˙̂x = Fx̂+K(z − ẑ) (21)

where
K = PHTV −1 (22)

and P satisfies the Riccati equation

Ṗ = FP +PFT + ∆(X) +W −PHTV −1HP (23)

where X is the variance of x taken here to be in
steady state, Xss. Therefore, the sum ∆(Xss) + W
where W is the variance of the additive noise is

∆(Xss) +W =


σ2

1 0 0 0 0
0 σ2

1 0 0 0
0 0 σ2

2 0 0
0 0 0 σ2

2 0
0 0 0 0 W0

 (24)

The estimates of state associated with altitude are

x̂1 = ̂
f̃h sin(ω1t+ θ)

x̂2 = ̂
f̃h cos(ω1t+ θ)

(25)

We can obtain the magnitude of the gradient as

| ˆ̃fh| =
√
x̂2

1 + x̂2
2 (26)

Combining eqn. (25) and eqn. (26), the gradient f̃h
is estimated as

ˆ̃
fh =

√
x̂2

1 + x̂2
2 sgn(x̂1 sinω1t+ x̂2 cosω1t) (27)

Similarly, the gradient f̃y is computed as

ˆ̃
fy =

√
x̂2

3 + x̂2
4 sgn(x̂3 sinω2t+ x̂4 cosω2t) (28)

Note that due to the signum function, the gradient
estimates are not necessarily continuous. Note also
that ε̄1 and ε̄2 are embedded in eqns. (27,28). Their
effect is compensated by the values of the gains k1

and k2 chosen in the peak-seeking loop in Figure 7.

3.2 Sinusoidal Tracking Loop for
Aerodynamics

For the purpose of control system design, the air-
craft’s dynamics are frequently linearized about

some operating condition or flight regime. The con-
trol surfaces and engine thrust are trimmed at these
conditions and the control system is designed to
maintain them, i.e., to force any perturbation from
these conditions to zero.

Also, it is customary to separate the longitu-
dinal motion from the lateral motion in studying
small perturbations from trim conditions. In most
cases the lateral and longitudinal dynamics are only
lightly coupled, and the control system can be de-
signed for each channel without regard to the other
[17]. This approach is taken in this work, so that the
longitudinal and lateral tracking loops are designed
separately. The state vectors, plant, and control
matrices used are as follows:
• Longitudinal Dynamics

ṡ
α̇
q̇

θ̇

ḣ

 =


Xs Xα 0 −g 0
ZsV ZαV 1 0 0
Ms Mα Mq 0 0
0 0 1 0 0
0 −V 0 V 0



s
α
q
θ
h



+


XE

ZEV
ME

0
0

 δE +


α
−1/V

0
0
0

 L̄ (29)

where

s = Change in speed (ft/sec)
α = Angle of attack (rad)
q = Pitch rate (rad/sec)
θ = Pitch angle (rad)
h = Altitude (ft)
δE = Elevator deflection (rad)

• Lateral Dynamics
β̇
ṗ
ṙ

φ̇

ψ̇
ẏ

 =


YβV YpV YrV − 1 gV 0 0
Lβ Lp Lr 0 0 Ly
Nβ Np Nr 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−V 0 0 0 V 0

×

β
p
r
φ
ψ
y

+


YAV YRV
LA LR
NA NR
0 0
0 0
0 0


[
δA
δR

]
+


0
1
0
0
0
0

 L̄u
(30)
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where

β = Slide slip angle (rad)
p = Roll rate (rad/sec)
r = Yaw rate (rad/sec)
φ = Roll angle (rad)
ψ = Yaw angle (rad)
y = Cross-track displacement (ft)
δA = Aileron deflection (rad)
δR = Rudder deflection (rad)

Note the additions to the usual linear aircraft
equations. The longitudinal channel includes an ad-
ditional input to the α̇ equation, due to the vortex-
induced lift. For the same of controller design, this
is modelled as a constant input. The lateral chan-
nel (eqn. 30) includes both a constant term and a
linearly-varying term in the ṗ equation, this time
due to the vortex-induced rolling moment.

Because the command input of the system is oscil-
latory, eqns.(29,30) cannot be used directly to derive
the controllers. First, an error state must be devel-
oped that maps the oscillatory system into a linear
space, in which the system does not appear oscilla-
tory. Standard Linear Quadratic Regulator (LQR)
techniques may then be used to derive the controller.
Note that, for state space, a similar approach was
seen in [17]. The design process for the controller for
the longitudinal states will be covered briefly here.

First, an error state is defined as

e = hc − h (31)

and, taking derivatives and substituting values from
eqn. (29), this leads to the equations

e1 = e = hc − h = ĥ+ ε1 sinω1t− h
e2 = ė1 = ḣc − ḣ = ω1ε1 cosω1t− V (θ − α)
e3 = ė2 = −ω2

1ε1 sinω1t− V (θ̇ − α̇)

Now, this third error state has the derivative

ė3 = −ω2
1e2 + V (ω2

1α+ α̈)− V (ω2
1θ + θ̈)

The repetition of terms such as ω2
1α+ α̈ leads us to

introduce the new state

θ̄ = ω2
1θ + θ̈

which has the derivative

˙̄θ = ω2
1 θ̇ + θ(3) = ω2

1q + q̈

Following in this pattern, we introduce the states

ᾱ = ω2
1α+ α̈

s̄ = ω2
1s+ s̈

q̄ = ω2
1q + q̈

and the control variable

δ̄E = ω2
1δE + δ̈E (32)

Using these states and control, the dynamic sys-
tem from eqn. (29) becomes



ė1

ė2

ė3

˙̄s
˙̄α
˙̄q
˙̄θ


=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 −ω2 0 0 V 0 −V
0 0 0 Xs Xα 0 −g
0 0 0 Zsv ZαV 1 0
0 0 0 Ms Mα Mq 0
0 0 0 0 0 1 0


×



e1

e2

e3

s̄
ᾱ
q̄
θ̄


+



0
0
0
XE

ZE
ME

0


δ̄E (33)

Note that the new control variable δ̄E is not oscil-
latory; a glance at eqn. (32) shows that the actual
control δE will, however, have the desired sinusoidal
characteristics.

++ Longitudinal
Dynamics

δEhc

h

θ

e

-

++

-

k   + k  s + k  s1 2 3
2

s  + ω22

[k   k   k   k  ]5 6 7 8

s,   ,  q,α

Figure 8: Longitudinal Channel Controller

Now that a standard linear system has been de-
rived, standard LQR techniques quickly provide a
stable controller for this system. Converting the
states and control back to the original state space
results in a controller of the form in Figure 8.
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For the lateral dynamics we have:

ė1

ė2

ė3

ė4

˙̄β
˙̄p
˙̄r
˙̄φ
˙̄ψ
˙̄ξ


=



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −ω2 0 V
0 0 0 0 YβV
0 −ωLy 0 −Ly Lβ
0 0 0 0 Nβ
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

· · ·

· · ·

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −V 0
YpV YrV − 1 gV 0 0
Lp Lr 0 0 0
Np Nr 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0





e1

e2

e3

e4

β̄
p̄
r̄
φ̄
ψ̄
ξ̄



+



0 0
0 0
0 0
0 0

YAV YRV
LA LR
NA NR
0 0
0 0
0 0



[
δ̄A
δ̄R

]
(34)

where

e1 = yc − y; yc = y0 + ε sinωt
e2 = ė1; e3 = ė2; e4 = ė3

β̄ = ω2β̇ + β(3)

p̄ = ω2ṗ+ p(3)

r̄ = ω2ṙ + r(3)

φ̄ = ω2θ̇ + θ(3) = ξ̇

ψ̄ = ω2ψ̇ + ψ(3)

ξ = ω2θ + φ(3)

δ̄A = ω2δ̇A + δ
(3)
A

δ̄R = ω2δ̇R + δ
(3)
R

and again, LQR techniques provide a stable con-
troller for the system. In these dynamics, the rolling

moment due to the vortex is included, as it is a very
strong term. This led to the need for one higher
level of differentiation in the error states.

3.3 Peak-Seeking Loop

The controller derived in the preceding section as-
sumes a constant value to track, in keeping with the
assumption that the estimate of the optimal flight
position changes slowly. Note that this assumption
is inherent in the time-scale separation that allows a
dither signal to be imposed on a “constant” nominal
value of (ŷ, ĥ) in the Kalman filter.

Given that the initial assumption of (ŷ, ĥ) is
bound to be incorrect, we must have a way to update
it. In some earlier work[10], where only the sign of
the gradient was found, this was done merely by in-
tegrating a constant times the sign of the estimated
gradient. Later[20], this was extended to integrat-
ing a multiple of the gradient estimate itself. The
second approach will be used here, giving an overall
control loop as shown in Figure 7.

4 Simulation Results

In this section, we apply the peak-seeking controller
derived in section 3 to the formation flight problem.
Rather than attempt to minimize drag directly, we
instead maximize the rolling moment induced by the
vortex from the lead craft. Recall that for the air-
craft geometry under consideration, this maximum
corresponds to the maximum induced lift. While
drag is difficult if not impossible to measure directly,
the induced moment can easily be estimated through
its effects on the aircraft dynamics. We assume for
this simulation that the moment can be effectively
measured.

For the puposes of simulation, the lift and moment
induced by the vortex are computed as in section
2.2, and added to a linear aircraft model. The model
chosen is aircraft “A” from [16], which is much like
the Cessna-172 private aircraft. The aircraft param-
eters and nominal flight condition are given as

V∞ = 219 ft/ sec, h = 5000 ft, ρ = 0.002050 sl/ft3

W = 2645 lb. b = 35.8 ft c = 4.9 ft

Using eqn. (3), this provides the strength per unit
length for all vortices to be

Γ =
2645

219(0.00205)(35.8)
= 164.6 ft2/ sec
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We are also given a lift coefficient slope for the air-
craft. This is an overall coefficient; the airfoil slope
is likely to be higher. The theoretical CLα for any
thin airfoil is 2π per radian; experience indicates
that a value of about 5.5 per radian is more accu-
rate. The listed overall CLα of 4.6 is somewhat less.
As the upwash affects primarily the airfoil, a value
of 5.5 is reasonable. All other values are as given in
[16].
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Figure 9: Results for altitude channel.
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Figure 10: Results for lateral channel.

Time histories from a simulation with initial con-
dition (h(0), y(0)) = (3, 3) are given. The optimal
position for this geometry is (0, 0). The initial esti-
mate of the optimal position is, however, the initial
condition. The gradient estimates are initialized to
zero, and the moment estimate is initialized to the
initial measurement of the moment. This set of re-
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Figure 11: Moment and moment estimate vs. Time.
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Figure 12: Angle of attack vs. Time.

sults is generated assuming zero error in the mea-
surement of the induced moment. The dither fre-
quencies ω1 and ω2 are 1Hz and 2Hz, respectively.

The position, command, and gradient estimates
are presented for the vertical channel in Figure 9,
and for the lateral channel in Figure 10. The con-
trol commands and the coordinates show the ex-
pected oscillatory nature. The craft converges to
the optimal position in approximately 80 seconds,
after which the gradient estimates oscillate about
zero. Note the discontinuous nature of the estimate
in the vertical channel; this can be traced to the
signum function in the estimate calculation.

The estimated and actual values of the moment
are plotted in Figure 11. The effect of both dither
signals on the moment can be seen in the oscillat-
ing measured moment. The moment estimate tracks
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the actual moment well, with the expected slight de-
lay. The best indication of the benefits of formation
flight is in Figure 12, which shows the angle of at-
tack. After the expected initial gradients, α is seen
to steadily decrease, finally hovering around a value
of nearly −1. This represents a reduction in the
body angle of attack away from the nominal, caused
by the additional lift from the lead aircraft vortex.
This is due to the need to generate less lift through
body angle, and implies a corresponding reduction
in induced drag.
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Figure 13: Results for altitude channel, with mea-
surement noise.
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Figure 14: Results for lateral channel, with mea-
surement noise.

The vertical channel results for the same case
with a noisy moment measurement are shown in
Figure 13, and the lateral channel in Figure 14. The
noise is zero mean, with covariance 100. In both
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Figure 15: Moment and moment estimate, with
measurement noise.

cases, the results are very similar to those without
noise. The moment measurement and estimate are
displayed in Figure 15. As expected, the conver-
gence is slightly delayed, but the tracking and per-
formance are only slightly degraded.

5 Conclusions

In this paper, an improved peak seeking scheme us-
ing modern estimation techniques is proposed. By
employing a Kalman filter, the scheme rejects noise
systematically, and allows the estimate of the gradi-
ents as well as the sign to be used. The technique is
applied to a simplified aircraft drag reduction prob-
lem, using realistic aircraft dynamics and including
the dominant nonlinear terms due to the aircraft in-
teraction. In simulation, the controller readily finds
and maintains the optimal position for drag reduc-
tion in a two-aircraft formation.
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